Public Key Infrastructure (PKI) is a method to validate the authenticity of an otherwise unknown entity across untrusted networks. PKI works by establishing a chain of trust, rather than trusting each individual host or entity explicitly. In order for a certificate presented by a remote entity to be trusted, that certificate must present a complete chain of certificates that can be validated using the root certificate of a Certificate Authority (CA) that is trusted by the local machine.
Establishing trust with a CA involves validating things like company address, ownership, contact information, etc., and ensuring that the CA has followed best practices, such as undergoing periodic security audits by independent investigators and maintaining an always available certificate revocation list. This is well outside the scope of BLFS (as it is for most Linux distributions). The certificate store provided here is taken from the Mozilla Foundation, who have established very strict inclusion policies described here.
This package is known to build and work properly using an LFS-11.1 platform.
Download (HTTP): https://github.com/lfs-book/make-ca/releases/download/v1.10/make-ca-1.10.tar.xz
Download size: 32 KB
Download MD5 Sum: 74f1ad16d7a086ac76e0424fd4dfe67b
Estimated disk space required: 6.6 MB (with all runtime deps)
Estimated build time: 0.1 SBU (with all runtime deps)
p11-kit-0.24.1 (required at runtime to generate certificate stores from trust anchors)
nss-3.75 (to generate a shared NSSDB)
User Notes: https://wiki.linuxfromscratch.org/blfs/wiki/make-ca
The make-ca script will download
and process the certificates included in the certdata.txt
file for use as trust anchors for
the p11-kit-0.24.1 trust module. Additionally, it
will generate system certificate stores used by BLFS applications
(if the recommended and optional applications are present on the
system). Any local certificates stored in /etc/ssl/local
will be imported to both the trust
anchors and the generated certificate stores (overriding Mozilla's
trust). Additionally, any modified trust values will be copied from
the trust anchors to /etc/ssl/local
prior to any updates, preserving custom trust values that differ
from Mozilla when using the trust utility from p11-kit to operate on the trust store.
To install the various certificate stores, first install the
make-ca script into the correct
location. As the root
user:
make install && install -vdm755 /etc/ssl/local
As the root
user, after installing
p11-kit-0.24.1, download the certificate
source and prepare for system use with the following command:
If running the script a second time with the same version of
certdata.txt
, for instance, to
update the stores when make-ca
is upgraded, or to add additional stores as the requisite
software is installed, replace the -g
switch with the -r
switch in the command line. If
packaging, run make-ca
--help to see all available command line options.
/usr/sbin/make-ca -g
You should periodically update the store with the above command,
either manually, or via a cron job.
If you've installed Fcron-3.2.1 and
completed the section on periodic jobs, execute the
following commands, as the root
user, to create a weekly cron job:
cat > /etc/cron.weekly/update-pki.sh << "EOF" &&
#!/bin/bash
/usr/sbin/make-ca -g
EOF
chmod 754 /etc/cron.weekly/update-pki.sh
For most users, no additional configuration is necessary, however,
the default certdata.txt
file
provided by make-ca is obtained from the mozilla-release branch,
and is modified to provide a Mercurial revision. This will be the
correct version for most systems. There are several other variants
of the file available for use that might be preferred for one
reason or another, including the files shipped with Mozilla
products in this book. RedHat and OpenSUSE, for instance, use the
version included in nss-3.75. Additional upstream downloads are
available at the links included in /etc/make-ca.conf.dist
. Simply copy the file to
/etc/make-ca.conf
and edit as
appropriate.
There are three trust types that are recognized by the make-ca script, SSL/TLS, S/Mime, and code
signing. For OpenSSL, these are
serverAuth
, emailProtection
, and codeSigning
respectively. If one of
the three trust arguments is omitted, the certificate is neither
trusted, nor rejected for that role. Clients that use OpenSSL or NSS encountering this certificate will present
a warning to the user. Clients using GnuTLS without p11-kit support are not aware of trusted
certificates. To include this CA into the ca-bundle.crt
, email-ca-bundle.crt
, or objsign-ca-bundle.crt
files (the GnuTLS legacy bundles), it must have the
appropriate trust arguments.
The /etc/ssl/local
directory is
available to add additional CA certificates to the system trust
store. This directory is also used to store certificates that were
added to or modified in the system trust store by p11-kit-0.24.1 so
that trust values are maintained across upgrades. Files in this
directory must be in the OpenSSL
trusted certificate format. Certificates imported using the
trust utility from
p11-kit-0.24.1 will utilize the x509 Extended
Key Usage values to assign default trust values for the system
anchors.
If you need to override trust values, or otherwise need to create
an OpenSSL trusted certificate
manually from a regular PEM encoded file, you need to add trust
arguments to the openssl command, and create a new
certificate. For example, using the CAcert roots, if you want to trust
both for all three roles, the following commands will create
appropriate OpenSSL trusted certificates (run as the root
user after Wget-1.21.2 is
installed):
wget http://www.cacert.org/certs/root.crt && wget http://www.cacert.org/certs/class3.crt && openssl x509 -in root.crt -text -fingerprint -setalias "CAcert Class 1 root" \ -addtrust serverAuth -addtrust emailProtection -addtrust codeSigning \ > /etc/ssl/local/CAcert_Class_1_root.pem && openssl x509 -in class3.crt -text -fingerprint -setalias "CAcert Class 3 root" \ -addtrust serverAuth -addtrust emailProtection -addtrust codeSigning \ > /etc/ssl/local/CAcert_Class_3_root.pem && /usr/sbin/make-ca -r
Occasionally, there may be instances where you don't agree with
Mozilla's inclusion of a particular certificate authority. If you'd
like to override the default trust of a particular CA, simply
create a copy of the existing certificate in /etc/ssl/local
with different trust arguments.
For example, if you'd like to distrust the "Makebelieve_CA_Root"
file, run the following commands:
openssl x509 -in /etc/ssl/certs/Makebelieve_CA_Root.pem \ -text \ -fingerprint \ -setalias "Disabled Makebelieve CA Root" \ -addreject serverAuth \ -addreject emailProtection \ -addreject codeSigning \ > /etc/ssl/local/Disabled_Makebelieve_CA_Root.pem && /usr/sbin/make-ca -r
Last updated on